Metamorphic evolution, partial melting and rapid exhumation above an ancient flat slab: insights from the San Emigdio Schist, southern California

A. D. CHAPMAN,1 P. I. LUFFI,2 J. B. SALEEBY1 AND S. PETERSEN3

1Division of Geological and Planetary Sciences, California Institute of Technology, M/C 100-23 1200 E. California Blvd., Pasadena, CA 91125, USA (alan@gps.caltech.edu)
2Department of Earth Science, Rice University MS-126, 6100 Main St., Houston, TX 77005, USA
3Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, USA

ABSTRACT

The San Emigdio and related Pelona, Orocopia, Rand and Sierra de Salinas schists of southern California were underplated beneath the southern Sierra Nevada batholith and adjacent southern California batholith along a shallow segment of the subducting Farallon plate in Late Cretaceous to early Tertiary time. These subduction accretion assemblages represent a regional, deeply exhumed, shallowly dipping domain from an ancient slab segmentation system and record the complete life cycle of the segmentation process from initial flattening and compression to final extensional collapse. An important unresolved question regarding shallow subduction zones concerns how the thermal structure evolves during the slab flattening process. New field relationships, thermobarometry, thermodynamic modelling and garnet diffusion modelling are presented that speak to this issue and elucidate the tectonics of underplating and exhumation of the San Emigdio Schist. We document an upsection increase in peak temperature (i.e. inverted metamorphism), from 590 to 700°C, peak pressures ranging from 8.5 to 11.1 kbar, limited partial melting, microstructural evidence for large seismic events, rapid cooling (825–380 °C Myr−1) from peak conditions and an ‘out and back’ P–T path. While inverted metamorphism is a characteristic feature of southern California schists, the presence of partial melt and high temperatures (>650 °C) are restricted to exposures with maximum depositional ages between 80 and 90 Ma. Progressive cooling and tectonic underplating beneath an initially hot upper plate following the onset of shallow subduction provide a working hypothesis explaining high temperatures and partial melting in San Emigdio and Sierra de Salinas schists, inverted metamorphism in the schist as a whole, and the observed P–T trajectory calculated from the San Emigdio body. Lower temperatures in Pelona, Orocopia and Rand schists are likewise explained in the context of this overarching model. These results are consistent with an inferred tectonic evolution from shallow subduction beneath the then recently active Late Cretaceous arc to exhumation by rapid trench-directed channelized extrusion in the subducted schist.

Key words: diffusion modelling; garnet; inverted metamorphism; P–T pseudosections; San Emigdio Schist.

INTRODUCTION

Crustal rocks are subducted along a variety of trajectories into the mantle. For instance, along-strike variations in slab dip have resulted in the concomitant formation of the high-pressure/low-temperature Franciscan complex and the high-pressure/moderate- to high-temperature Pelona, Orocopia, Rand, San Emigdio and Sierra de Salinas schist (collectively referred to as ‘the southern California schist’) terrane in California (Fig. 1) (Grove et al., 2003; Wakabayashi & Dumitru, 2007). While the Middle Mesozoic to early Tertiary Franciscan complex is thought to be the product of moderately dipping subduction, the Late Cretaceous to early Tertiary southern California schist was underplated directly beneath the southern Sierra Nevada batholith (SNB) and the once contiguous southern California batholith (granitoids of the Mojave–Salinia region) along a comparatively shallowly dipping segment of the subducting Farallon plate (Jacobson et al., 2007 and references therein). The deposition, subduction and structural ascent of the schist are temporally and spatially associated in plate reconstructions with the subduction of the eastern conjugate massif to the Shatsky Rise, a large igneous province (LIP) ~2000 km south-east of Japan (Saleeby, 2003; Liu et al., 2008, 2010). Subduction of the LIP is hypothesized to have driven slab flattening and upper plate extension (Saleeby et al., 2007).
et al., 2007; Chapman et al., 2010) somewhat analogous to the ongoing subduction of the Nazca Ridge and trench-directed detachment faulting above the Peruvian flat slab segment (Gutscher et al., 2000; McNulty & Farber, 2002).

An along-strike inflection zone varying from shallower to steeper slab dips northwestward, approximately centred along the trace of the superimposed Garlock fault (Saleeby, 2003), separates the schist and Franciscan subduction accretion assemblages, respectively (Fig. 1). Deep-crustal batholithic exposures, subjacent schist, and an intervening shear zone (the Rand fault and Salinas shear zone) of the southern Sierra Nevada, the adjacent north-west Mojave Desert, and the northern Salinia terrane (prior to Neogene northward translation) offer a unique opportunity to observe the inflection zone above a segmented slab. Furthermore, this package records a complete life cycle of the segmentation process with initial flattening resulting in the upper plate mantle lithosphere removal coincident with compressional deformation, rock uplift and denudation, followed abruptly by extensional collapse, all occurring in series as subduction progressed (Saleeby et al., 2007). An important unresolved question regarding shallow subduction zones concerns how the thermal structure evolves during the slab flattening process (English et al., 2003; Kidder & Ducea, 2006). We address this issue through petrogenetic characterization of the earliest formed schist in the San Emidigio Mountains, and comparison of this schist with later formed Pelona, Orocopia, Rand and Sierra de Salinas members.

Metasandstone and metabasaltic rocks of the San Emidigio Schist are distinguished from exposures of related Pelona, Orocopia, Rand and Sierra de Salinas schists by the nearly ubiquitous presence of garnet porphyroblasts. Growth zonation in these garnet grains is well-preserved, allowing for straightforward recovery of a portion of the pressure–temperature (P–T) history of the shallowly subducted schist (e.g. Spear & Silverstone, 1983; Vance & Mahar, 1998; Escuder Viruete et al., 2000). In addition, some garnet experienced cataclastic deformation. Subsequent overgrowth along broken margins resulted in natural diffusion couples from which the duration of metamorphic processes may be derived (e.g. Chakraborty & Ganguly, 1991; Ganguly et al., 1996; Dachs & Proyer, 2002; Ganguly, 2002; Vielzeuf et al., 2007). New field relationships, thermobarometry, thermodynamic modelling and garnet diffusion modelling are

Fig. 1. Geological map of southern California basement rocks based on USGS Open-File Report 2005-1305 (Ludington et al., 2007). EF, East Fork (San Gabriel Mountains); GF, Garlock fault; GH, Gavilan Hills; GV, Great Valley; KCF, Kern Canyon fault; MD, Mojave Desert; O, Orocopia Mountains; PRB, Peninsular Ranges batholith; PR, Portal Ridge; pKCF, proto-Kern Canyon fault; R, Rand Mountains; RRF, Reliz–Rinconada fault; SAF, San Andreas fault; SE, San Emidigio Mountains; SC, Santa Catalina Island; SNB, Sierra Nevada batholith; SP, Sierra Pelona; SS, Sierra de Salinas; TC, Tehachapi Mountains; WWF, White Wolf fault.
presented here that constrain the P–T history and the tectonics of underplating and exhumation of the San Emigdio Schist. These observations constrain the physical conditions once present above the Farallon flat slab segment and further our understanding of the tectonics of slab flattening and schist underthrusting and exhumation in the southern California region.

GEOLOGICAL BACKGROUND

The southern California schist has long attracted interest due to its position structurally beneath older Mesozoic batholithic rocks throughout southern California (Graham & England, 1976; Hazelt & Dillon, 1978; Ehlig, 1981; Jacobson, 1983; Jacobson et al., 1988, 2007, 2011). Most workers agree that the deposition and emplacement of the schist occurred during an episode of shallow subduction related to the Laramide orogeny (Jacobson et al., 2007 and references therein). Geochronological, thermochronometric and thermobarometric studies indicate a temporal link between schist unroofing and major upper crustal extension (Pickett & Saleeby, 1993; Jacobson, 1995; Kistler & Champion, 2001; Barth et al., 2003; Grove et al., 2003; Kidder et al., 2003; Kidder & Duca, 2006; Saleeby et al., 2007). Existing models for the exhumation of the northern (i.e. Rand and Sierra de Salinas) and southern (i.e. Pelona and Orocoipa) schists invoke return flow (Oyarzabal et al., 1997; Jacobson et al., 2002; Saleeby, 2003; Saleeby et al., 2007; Chapman et al., 2010), isostatically driven uplift (Jacobson et al., 2007), upper plate normal faulting (e.g. Jacobson et al., 1996), erosion (Yin, 2002) or some combination thereof. In the San Emigdio and Tehachapi Mountains, trench-directed channelized extrusion in the subducted schist is hypothesized to have led to collapse of the upper plate between c. 98 and 86 Ma (Saleeby et al., 2007; Chapman et al., 2010).

Uplift and folding of basement rocks and sedimentary cover strata in the San Emigdio Mountains were controlled by Pliocene–Quaternary north–south compression between the big bend in the San Andreas fault and the Pleito fault zone (Fig. 2) (Dibblee, 1986). A semi-continuous belt of southern California schist constitutes the base of the tectonic section in the San Emigdio and Tehachapi Mountains (referred to as ‘Pelona Schist’ by Sharry, 1981; ‘Rand Schist’ by Grove et al., 2003; Saleeby et al., 2007; Chapman et al., 2010; and ‘San Emigdio Schist’ by Jacobson et al., 2011). We follow the usage of Jacobson et al. (2011) and present evidence here that the San Emigdio Schist is distinct from other southern California members on the basis of geography, petrology and detrital zircon age distribution.

The Tehachapi–San Emigdio (TSE) complex structurally overlies the San Emigdio Schist and consists of a series of Early to mid-Cretaceous deep-level plutonic rocks and associated pre-Cretaceous framework metamorphic rocks (Saleeby et al., 2007; Chapman et al., 2010). The San Emigdio Schist is juxtaposed against the TSE complex along the remains of a locally ductile to brittle low-angle detachment fault system that probably correlates with the type Rand fault exposed in the Rand Mountains (Postlethwaite & Jacobson, 1987). During Pliocene–Quaternary compression, the Rand fault in the San Emigdio Mountains was largely folded with a major south-dipping thrust fault cutting across the folded structural section. As a result, the tectonostatigraphy is inverted with the San Emigdio Schist in the hangingwall and the TSE complex in the footwall. Decompression of the San Emigdio Schist from deep to mid-crustal levels is well constrained at 91–86 Ma (Grove et al., 2003) and is linked to extensional deformation along the Rand fault (Saleeby et al., 2007). The TSE complex structurally underlies the Pastoria plate along the Late Cretaceous to Eocene (?) (Wood & Saleeby, 1997) south-dipping Pastoria detachment. The Pastoria plate is composed of relatively shallow level (3–4 kbar) eastern SNB affinity granitoids and metamorphic pendant rocks (Crowell, 1952).

METAMORPHIC PETROLOGY

Mineral abbreviations: Act, actinolite; alm, almandine; And, andalusite; Bt, biotite; Chl, chlorite; Cpx, clinopyroxene; Crd, cordierite; Cum, cummingtonite; Ep, epidote; Fsp, feldspar; Grt, garnet; Gln, glaucophane; Gr, graphite; grs, grossular; Hbl, hornblende; Ilm, Ilmenite; Kfs, K-feldspar; Ky, kyanite; Lws, lawsonite; Ms, muscovite; Omp, omphacite; Opx, orthopyroxene; Pg, paragonite; Pl, plagioclase; Prp, pyrope; Qz, quartz; Rt, rutile; Sil, sillimanite; sps, spessartine; Spn, sphene; St, staurolite; Zo, zoisite.

Tehachapi–San Emigdio complex

The TSE complex in the upper plate of the Rand fault in San Emigdio Mountains consists of at least two distinct upper amphibolite facies orthogneiss units (Fig. 2) and one paragneiss unit. These include: (i) the 131 Ma Antimony Peak tonalite (James, 1986), (ii) an undated hornblende quartz diorite gneiss that probably correlates with hornblende gabbroids of the 105–99 Ma intrusive suite of Bear Valley (Saleeby et al., 1987, 2007; Pickett & Saleeby, 1993) and (iii) the western continuation of the Grapevine Canyon paragneiss (Pickett & Saleeby, 1993, 1994). The Antimony Peak body is a medium- to coarse-grained massive to penetratively foliated tonalite that contains mainly plagioclase, quartz, hornblende and K-feldspar, with minor amounts of garnet, biotite, epidote, apatite, sphene and ilmenite (Fig. 3a). Where hypidiomorphic granular (igneous) textures are not overprinted by metamorphic foliation, the epidote occurs as subhedral replacement products of embayed hornblende and retains distinct core and rim regions, consistent with a magmatic origin. Original petrographic relationships are locally obscured by extensive seritization and chloritization.
Fig. 2. (a) Simplified geological map of the San Emigdio Mountains. Geology from Ross (1989), Dibblee (1973), Chapman et al. (2010) and this study. Mafic schist shown in black. Black and white circles show locations of thermobarometric determinations from upper plate and San Emigdio Schist, respectively. Abbreviations as in Fig. 1. (b) Graphical representation of thermometric data along western, central and eastern transects.
The second unit is informally named the San Emigdio quartz diorite orthogneiss and abbreviated the San Emigdio gneiss (Fig. 3b). The San Emigdio gneiss lies structurally above the Rand fault, and consequently exhibits a strongly attenuated structural fabric characterized by anastomosing ductile to brittle shear zones. We consider the San Emigdio gneiss a tectonic unit that consists mainly of strongly sheared quartz diorite: hornblende + plagioclase + quartz + ilmenite ± coarse subsolidus garnet ± sphene ± K-feldspar, with lesser amounts of deformed tonalite and trondhjemite. The upper plate thermobarometric work was focussed primarily on the San Emigdio gneiss, as this unit lies in structural contact with the San Emigdio Schist.

San Emigdio Schist

The San Emigdio Schist consists of roughly 80% interlayered metapsammite and quartzite (metasedimentary) commingled with 15% metabasalt and 5% ultramafic (talc–actinolite) schist (Fig. 4). The metasedimentary member of the schist is characterized by the well-preserved peak mineral paragenesis garnet + plagioclase + biotite + quartz ± muscovite ± kyanite, which defines the D1 foliation, a weakly crenulated fabric with lesser amounts of rutile, ilmenite and graphite. In addition, mineral assemblages and textures vary with structural depth. Highly altered kyanite grains and chloritized kyanite pseudomorphs prevalent at low structural levels of the schist are absent at higher structural levels (Fig. 4). Also, as the Rand fault is approached from low structural levels: (i) garnet size and abundance increases; (ii) plagioclase changes from untwinned, graphitic poikiloblasts to twinned, graphite-free and inclusion-poor porphyroblasts; (iii) primary muscovite disappears; (iv) the overall grain size increases; (v) macroscopic stromatic leucosomes and melanosomes develop within the D1 foliation; and (vi) ductilely deformed quartzofeldspathic (milky quartz + plagioclase ± garnet ± muscovite) veins become more common and more strongly transposed along the D1 foliation (Fig. 4). Observations 5 and 6 suggest that fluid-saturated partial melting occurred during the D1 episode. A less pervasive fabric, D2, is localized within mm-scale non-coaxial shear zones that truncate D1 mineral assemblages and anatectic textures and contain retrograde clinohumite, chlorite, celadonitic muscovite, tourmaline and highly sheared minerals belonging to the D1 assemblage. Finally, clinohumite, while only associated with the D2 assemblage at moderate to high structural levels, is a rare D1 phase at deep levels (>1000 m). Therefore, in contrast to high structural levels where amphibolite facies conditions were reached and limited partial melting may have occurred, peak conditions probably did not exceed epidote–amphibolite facies at low structural levels. These observations support thermobarometric work (detailed below) indicating the presence of an inverted metamorphic field gradient.

The metabasalt member, referred to here as ‘mafic schist’, also records multiple distinct phases of deformation and metamorphism. Epidote relics characterize the earliest preserved phase, occurring as isolated, 2 to 5 mm-long optically continuous inclusions in plagioclase, commonly exhibiting concentric birefringence zonation (Fig. 4). Narrow rims of opaque minerals and small (25–50 µm) ovoid quartz blebs commonly intervene between epidote and host plagioclase. We interpret the textural relationships between plagioclase and epidote to result from epidote breakdown by a reaction such as epidote + quartz ⇌ anorthite + opaque + H₂O (Spear, 1993). A D1 fabric is wrapped about epidote porphyroblasts, and is defined by well-preserved elongate tschermakitic to paragastisitic hornblende + plagioclase ± quartz and subordinate Ti-oxides ± garnet ± biotite. Plagioclase porphyroblasts are typically homogeneous and range in composition from An₁₇ to An₃₅ (oligoclase to andesine) from sample to sample. At high structural levels (<100 m from the Rand fault), diopsidic to augitic clinopyroxene enters the stable D1 assemblage (Fig. 4). The D1 fabric is locally overprinted by retrograde D2
minerals clinopyroxene, tremolite and calcite. Retrograde chlorite is rare. Retrograde conversion of hornblende to actinolite, as seen along the Vincent fault in the San Gabriel Mountains (Jacobson, 1997), is not observed. Lenses of ultramafic material typically crop out within or adjacent to mafic schist (Fig. 4).

In contrast to other exposures of the southern California schist (e.g. Sharry, 1981; Postlethwaite & Jacobson, 1987; Jacobson, 1997; Kidder & Ducea, 2006; Jacobson et al., 2007), the San Emigdio Schist has abundant garnet except at the lowest structural levels. The majority of garnet from both metasandstone and mafic schist forms 1 to 5 mm idioblastic grains with blebby quartz inclusions. By contrast, within the upper ~150 m of the schist, garnet is locally cataclastically deformed along two sets of fractures, F1 and F2, potentially corresponding to D1 and D2 episodes (Fig. 4). While we cannot conclusively link F1 and F2 fractures to D1 and D2 fabric development, there exists a clear temporal relationship between the fracture sets. Garnet exhibiting F2 fractures is characterized by pervasive, linear, near foliation-normal, dilatant cracks that overprint F1 fractures. Similar features reported from the Morin shear zone of the Canadian Grenville Province are interpreted as evidence of structural ascent in the upper crust (Ji et al., 1997). We focus here on garnet exhibiting F1 fractures, and such garnet is hereafter referred to as ‘broken garnet’. These garnet grains are either torn completely apart or frictionally displaced along fractured surfaces with no systematic orientation and are partially replaced by D2 minerals. The displacement along fractured surfaces is typically between 50 μm and 2 mm. However, large portions of several broken garnet grains are entirely missing and cannot be recognized in the same thin section. This implies large displacements (>2 mm; comparable to or exceeding the grain size) along fractures regardless of whether missing garnet fragments were dispersed into the third dimension or translated entirely from the thin section.

MINERAL ZONATION

Analytical methods

Electron microprobe analyses were performed using a JEOL8200 system (California Institute of Technology) equipped with five LiF, PET and TAP crystal spectrometers. Major element concentrations were measured in point and line analyses at 15 kV accelerating voltage and a 25 nA beam current with 60 s count times, using natural and synthetic standards, and the CITZAF correction algorithm. Garnet analyses were performed in spot mode, while plagioclase, muscovite and biotite grains were measured using a 5 μm beam width. Individual points along some analytical traverses in garnet were spaced as little as 1 μm apart. At this spacing interval, given the length of our diffusion profile, the effect of spatial averaging in microprobe analysis is negligible compared to the uncertainties in available self-diffusion and interdiffusion data (Ganguly et al., 1988). X-ray imaging of Fe, Mg, Ca, Mn, P and Ti distribution in garnet was done with the same instrument at 15 kV accelerating voltage and 400 nA beam current with a pixel size of 5 μm and dwell times of 300 ms per pixel. Maps were processed to enhance zonation features using the imagesc function in MATLAB.

Schist

X-ray mapping and analytical traverses of broken and intact garnet from both metasandstone and mafic schist members (Fig. 5) show well-preserved bell-shaped Mn profiles with Mn-rich core regions and Mn-poor rims, plus monotonically increasing Mg# (Mg/Mg + Fe) from core to rim, features indicative of typical prograde garnet growth (Spear, 1993). However, sharp and pronounced compositional gradients, particularly in Mn and Ca, corresponding to inclusion-rich rims and relatively inclusion-poor cores suggest a two-stage growth history. While a detailed analysis of the growth history of San Emigdio Schist garnet is beyond the scope of this article, we argue below that core-overgrowth textures probably developed during a single metamorphic event as opposed to two discrete events because: (i) steep compositional gradients may be explained by fractional crystallization and (ii) the time interval between deposition, deep subduction (~30 km), and structural ascent to mid-crustal levels was extremely short (<3 Myr) (Grove et al., 2003). At high structural levels (<150 m from the Rand fault) in the extreme easternmost and westernmost exposures of the schist in the San Emigdio Mountains, garnet resorption features and diffusive relaxation of major and trace element growth zonation are common (Figs 5 & 6). Except at high structural levels, garnet lacks ‘Mn kick-ups’ (Kohn & Spear, 2000), indicating that Fe–Mg exchange between garnet and biotite has not been disrupted by retrograde net transfer reactions. Whereas zonation is concentric in idioblastic garnet, there is an obvious truncation, most
Fig. 5. (a) X-ray maps and (b) zonation profiles in schist garnet. Location of profiles shown in Ca maps of samples 06SE23 and 08SE479B. Hot colours in X-ray images represent relatively high concentration with red for the highest and bluish purple for the lowest.
Garnet from the San Emigdio gneiss is almandine-rich with lesser amounts of pyrope, grossular and spessartine components \((X_{\text{alm}} = 0.73-0.60, X_{\text{prp}} = 0.25-0.16, X_{\text{grs}} = 0.17-0.09 \text{ and } X_{\text{sp}} = 0.04-0.01) \) (Fig. 8; Table S1). Representative garnet mole fractions and precision \((1\sigma)\) calculated from counting statistics from sample 06SE14A are: \(X_{\text{alm}}, 0.627 \pm 0.012; X_{\text{grs}} , 0.150 \pm 0.003; X_{\text{prp}} , 0.206 \pm 0.008; X_{\text{sp}}, 0.017 \pm 0.002.\) At the scale of Fig. 8, this uncertainty is smaller than the scale of the symbols representing each data point. While considerable scatter is apparent in conventional microprobe traverses, subtle variations in garnet composition are detectable within analytical uncertainty. Moreover, X-ray maps clearly resolve three distinct compositional domains in garnet from the San Emigdio gneiss. These garnet grains are generally compositionally homogeneous with flat interior profiles \((\text{zone} 1)\) except for weak annuli in a second zone between 300 and 1500 \(\mu \text{m}\) from the rims \((\text{normalized distances of }0.7-0.9 \text{ from core regions})\). These annuli first change to relatively high concentrations of Ca, Fe and Mn, and low Mg\# values, and then along the outer \(\sim 300 \mu \text{m} \) \((\text{zone} 3)\) the trends reverse back towards interior compositions. The zone 1 mantled by zone 2 pattern is typical for garnet throughout the deep-level batholithic plate \((\text{Pickett & Saleeby, 1993})\), but the outermost compositional reversal is restricted to proximity to the Rand fault.

Line traverses and X-ray maps of plagioclase and hornblende porphyroblasts show little internal variation in composition, suggesting that they are not significantly modified by retrograde metamorphism. Textural relationships between garnet, hornblende, plagioclase and quartz grains in direct contact corroborate chemical evidence, outlined above, that this is an equilibrium assemblage suitable for thermobarometry.

Thermobarometry and Inverted Metamorphic Field Gradient

Equilibrium \(P-T\) conditions were calculated using the internally consistent average \(P-T\) mode in Thermo-Calc, version 3.26 \((\text{Powell & Holland, 1994; Holland & Powell, 1998})\). Thermobarometry was done on garnet-bearing schist and upper plate samples \((\text{Fig. 9})\). The \(P-T\) conditions for metasandstone schist were calculated from garnet + plagioclase + muscovite + biotite + quartz assemblages interpreted, based on chemical and textural evidence outlined above, to have equilibrated during peak metamorphism. Garnet–hornblende thermometry and garnet–hornblende–plagioclase–quartz barometry were applied to mafic schist and upper plate lithologies. For all samples, the garnet rim compositions were used where Mg\# is highest suggesting garnet growth at peak temperatures \((\text{Spear, 1993})\). All calculations were done assuming a water activity of unity, due to the abundance of hydrous phases. Calculated temperatures and pressures for the schist range from 590 to 700 \(^{\circ}\text{C}\) and 8.5–11.1 kbar. Temperatures calculated from the San Emigdio gneiss \((675–710 \, {^{\circ}\text{C}})\) are identical within error to those from

![Fig. 6. X-ray map of garnet from schist sample 06SE16A for phosphorus. Note partially resorbed idioblastic core (arrows) mantled by rounded rim. Bright areas denote relatively high phosphorus.](image)
Fig. 7. (a) X-ray map of broken garnet from schist sample 06SE23 for Ti; referred to as ‘grain 1’ in text. (b & c) Results of diffusion modelling for grains 1 and 2, respectively. Location of profile in grain 1 shown in (a); grain 2 not shown.
the uppermost levels of the schist, whereas calculated pressures are ~1 kbar lower (7.1–8.4 kbar). Results from thermobarometric work and representative mineral compositions are summarized in Tables 1 & S1–S5.

Three thermobarometric transects were done from high to low structural levels of the schist (Fig. 2). In each transect, temperature determinations from samples in close proximity to the Rand fault were ~90–120 °C higher than those from samples collected 106–1840 m below the fault. This equates to thermal gradients from 50 to 1100 °C km⁻¹. Calculated thermal gradients increase with decreasing exposed structural thickness from east to west (Fig. 2), suggesting that structural attenuation is at least partly responsible for the 1100 °C km⁻¹ value. Thermal gradients of 50–240 °C km⁻¹ (calculated from eastern and central transects, respectively) are similar to those reported in the schist of Sierra de Salinas (50–70 °C; Kidder & Ducea, 2006) and in the Pelona Schist (240 °C km⁻¹; Graham & Powell, 1984).

THERMODYNAMIC MODELLING AND P–T PATHS

Prograde garnet zonation features in the schist are remarkably well-preserved, allowing for straightforward recovery of a large portion of the early P–T history of the schist. The P–T paths for metasandstone and mafic schist samples were constrained using petrography, garnet zonation patterns and P–T pseudosection calculations. A description of the thermodynamic modelling routine is given in Appendix S1. Figure 10a shows a P–T pseudosection for the bulk composition of sample 06SE23. The peak mineral assemblage of garnet + plagioclase + muscovite + biotite + quartz present in 06SE23 is quite common in other metasandstones from intermediate to high structural levels of the schist and is consistent with those predicted from the pseudosection. The P–T results from THERMOCALC plot within the field of the peak assemblage and are in close proximity to the H₂O-saturated solidus.
Table 1. Summary of thermobarometric calculations from the San Emigdio Mountains.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lithology</th>
<th>UTM easting<sup>a</sup></th>
<th>UTM northing<sup>a</sup></th>
<th>Distance to Rand fault (m)<sup>b</sup></th>
<th>Mineralogy</th>
<th>T (°C)<sup>c</sup></th>
<th>P (kbar)<sup>d</sup></th>
<th>Corr.<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>08SE202</td>
<td>Upper plate</td>
<td>322237</td>
<td>3863252</td>
<td>357</td>
<td>Grt Hbl Pl Qz</td>
<td>695 ± 40</td>
<td>7.1 ± 0.9</td>
<td>0.555</td>
</tr>
<tr>
<td>08SE270</td>
<td>Upper plate</td>
<td>309137</td>
<td>3861143</td>
<td>3</td>
<td>Grt Hbl Pl Qz</td>
<td>699 ± 66</td>
<td>8.4 ± 1.5</td>
<td>0.604</td>
</tr>
<tr>
<td>04SE1a</td>
<td>Upper plate</td>
<td>310571</td>
<td>3861983</td>
<td>0</td>
<td>Grt Hbl Pl Qz</td>
<td>710 ± 28</td>
<td>8.3 ± 0.7</td>
<td>0.577</td>
</tr>
<tr>
<td>06SE14a</td>
<td>Upper plate</td>
<td>310575</td>
<td>3861982</td>
<td>0</td>
<td>Grt Hbl Pl Qz</td>
<td>677 ± 27</td>
<td>8.0 ± 0.7</td>
<td>0.586</td>
</tr>
<tr>
<td>06SE54</td>
<td>Metasandstone</td>
<td>319332</td>
<td>3864441</td>
<td>0</td>
<td>Grt Bt<sup>f</sup></td>
<td>> 700</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>06SE74a</td>
<td>Metasandstone</td>
<td>310569</td>
<td>3861996</td>
<td>0</td>
<td>Grt Bt<sup>f</sup></td>
<td>> 700</td>
<td>ND</td>
<td>NA</td>
</tr>
<tr>
<td>06SE467<sup>g</sup></td>
<td>Metasandstone</td>
<td>310405</td>
<td>3861862</td>
<td>0</td>
<td>Grt Hbl Pl Qz</td>
<td>704 ± 45</td>
<td>9.2 ± 1.0</td>
<td>0.661</td>
</tr>
<tr>
<td>07SE17</td>
<td>Metasandstone</td>
<td>316311</td>
<td>3863579</td>
<td>–5</td>
<td>Grt Ms Bt Pl Qz</td>
<td>665 ± 78</td>
<td>9.8 ± 1.1</td>
<td>0.879</td>
</tr>
<tr>
<td>06SE23</td>
<td>Metasandstone</td>
<td>310595</td>
<td>3861943</td>
<td>–30</td>
<td>Grt Ms Bt Pl Qz</td>
<td>665 ± 29</td>
<td>10.0 ± 0.9</td>
<td>0.845</td>
</tr>
<tr>
<td>06SE54</td>
<td>Metasandstone</td>
<td>310682</td>
<td>3861857</td>
<td>–60</td>
<td>Grt Ms Bt Pl Qz</td>
<td>619 ± 36</td>
<td>10.0 ± 1.2</td>
<td>0.800</td>
</tr>
<tr>
<td>06SE9</td>
<td>Metasandstone</td>
<td>310715</td>
<td>3861775</td>
<td>–106</td>
<td>Grt Hbl Ms Bt Pl Qz</td>
<td>586 ± 27</td>
<td>8.5 ± 1.0</td>
<td>0.844</td>
</tr>
<tr>
<td>07SE19</td>
<td>Metasandstone</td>
<td>316248</td>
<td>3863258</td>
<td>–229</td>
<td>Grt Ms Bt Pl Qz</td>
<td>612 ± 31</td>
<td>9.0 ± 1.0</td>
<td>0.783</td>
</tr>
<tr>
<td>08SE469</td>
<td>Metasandstone</td>
<td>319291</td>
<td>3864057</td>
<td>–254</td>
<td>Grt Ms Bt Pl Qz</td>
<td>674 ± 77</td>
<td>9.9 ± 1.1</td>
<td>0.870</td>
</tr>
<tr>
<td>08SE478<sup>h</sup></td>
<td>Metasandstone</td>
<td>321131</td>
<td>3861956</td>
<td>–1250</td>
<td>Grt Bt Pl Qz</td>
<td>619 ± 77</td>
<td>10.0</td>
<td>NA</td>
</tr>
<tr>
<td>08SE474</td>
<td>Metabasalt</td>
<td>320841</td>
<td>3862435</td>
<td>–1368</td>
<td>Grt Hbl Pl Qz</td>
<td>604 ± 42</td>
<td>8.8 ± 1.1</td>
<td>0.661</td>
</tr>
<tr>
<td>08SE475</td>
<td>Metabasalt</td>
<td>320182</td>
<td>3862624</td>
<td>–1434</td>
<td>Grt Hbl Pl Qz</td>
<td>621 ± 40</td>
<td>8.7 ± 1.1</td>
<td>0.650</td>
</tr>
<tr>
<td>08SE479b</td>
<td>Metabasalt</td>
<td>320620</td>
<td>3862026</td>
<td>–1545</td>
<td>Grt Hbl Pl Qz</td>
<td>633 ± 66</td>
<td>8.7 ± 1.6</td>
<td>0.662</td>
</tr>
<tr>
<td>08SE476</td>
<td>Metasandstone</td>
<td>321804</td>
<td>3868014</td>
<td>–1840</td>
<td>Grt Ms Bt Pl Qz</td>
<td>640 ± 31</td>
<td>11.1 ± 1.1</td>
<td>0.776</td>
</tr>
</tbody>
</table>

^aND, not determined; NA, not applicable.
^bUTM coordinates are WGS datum, zone 11N.
^cDistance to Rand fault: positive and negative values indicate position above and below the Rand fault, respectively.
^dUncertainties based on propagation of uncertainties on thermodynamic data and activity–composition relationships through thermobarometric calculations.
^eCorrelation coefficient between pressure and temperature from THERMOCALC.
^fSample shows evidence of partial melt.
^gPhases not touching; lack of primary muscovite and presence of partial melt suggests > 700 °C at 10 kbar (Fig. 10a), assuming similar bulk composition to 06SE23.
^hGarnet–biotite temperatures; calculated at 10 kbar.

Fig. 10. Calculated ‘prograde’ P–T pseudosections for samples (a) 06SE23 and (b) 08SE479B. THERMOCALC results overlain for comparison. Numbered fields listed in Appendix S2. Bulk compositions listed in Table S6.

Figure 11 shows the pseudosection of Fig. 10a superimposed with volume per cent H$_2$O in solids, garnet abundance contours, and almandine, spessartine, grossular and pyrope isopleths. In general, X_{alm} and X_{prp} are strongly temperature-dependent, X_{sp} is strongly pressure-dependent, and at high temperatures X_{grs} is as pressure-dependent as X_{sp}. We calculate conditions of garnet nucleation from the intersection of end-member isopleths that correspond to garnet core compositions (e.g., Vance & Mahar, 1998). The intersection of the garnet core composition isopleths ($X_{\text{alm}} = 0.35$, $X_{\text{sp}} = 0.37$, $X_{\text{grs}} = 0.20$ and $X_{\text{prp}} = 0.02$) indicates the temperature and pressure conditions at the onset of growth. Although garnet contains no inclusions useful for thermobarometry, which prohibits an independent check of the conditions of garnet core formation, the tight intersection of the compositional contours at the point 4.3 kbar, 475 °C strongly...
Fig. 11. Pseudosection shown in Fig. 10a with contours of (a) volume per cent H₂O in solids, (b) volume fraction garnet and (c–f) garnet composition expressed as mol fractions overlain. Arrow represents inferred prograde P–T trajectory.
suggests that the pseudosection accurately reproduces the physical conditions of garnet nucleation.

Mafic sample 08SE479b contains the peak assemblage garnet + plagioclase + hornblende + quartz and is representative of mafic schist outcrops > 100 m from the Rand fault. The pseudosection of Fig. 10b is overlain by garnet isopleths in Fig. 12. Garnet core composition isopleths (X_{clino} = 0.36, X_{grs} = 0.35, X_{sps} = 0.28 and X_{prp} = 0.02) intersect at ~6.5 kbar, 575 °C. Mineral isopleth-based constraints of garnet nucleation in both metasandstone and mafic schist lie well inside the stability field of garnet as predicted by equilibrium growth (Figs 10–12). This is most likely due to the effect of missing Mn end-members in the solution models of competing phases. The presence of Mn-bearing chlorite, biotite and ilmenite during prograde metamorphism would hinder garnet nucleation and growth at low metamorphic grades, restricting its stability field to higher pressures and temperatures. Additional explanations for this observation include: (i) late metastable nucleation of garnet (i.e. overstepping of the garnet isograd), (ii) limited local equilibrium due to slow reaction kinetics at low temperatures, and (iii) diffusional modification of the core.

Prograde paths for garnet in samples 06SE23 and 08SE479b are approximated by interpolating the conditions of garnet core formation with peak metamorphic conditions. The preferred prograde paths outlined in Figs 11 & 12 incorporate these constraints and take into consideration: (i) the lack of prograde clinozoisite in sample 06SE23 and the presence of prograde epidote in sample 08SE479b; (ii) the preservation of primary muscovite in sample 06SE23; and (iii) the lack of evidence for partial melting in these samples, although such evidence is present at higher structural levels in the schist. Therefore, the likely prograde path for sample 06SE23 involves burial from ~4.3 to 10 kbar and contemporaneous heating from 475 to 665 °C. Along this path, the only net transfer reaction encountered in sample 06SE23 during garnet growth is the chlorite-out reaction. The lack of primary chlorite as inclusions within garnet probably resulted from garnet scavenging Fe, Mg, Al and Si from the mineral, which was likely present during garnet core growth. The prograde trajectory of sample 08SE479b overlaps that of 06SE23, with conditions increasing from 7 kbar, 575 °C to 8.4 kbar, 636 °C. It is important to note that although the preferred prograde P–T paths shown in Figs 11 & 12 explain many core-to-rim garnet zonation trends in samples 06SE23 and 08SE479b (e.g. monotonically increasing X_{prp}, monotonically decreasing X_{sps}, approximately constant X_{grs} and increasing X_{alm} prior to reaching a compositional plateau in the outer 400 μm), modelled garnet isopleths do not match the composition of garnet beyond the cores at any point in P–T space. In other words, the garnet core compositions are the only regions that can be successfully modelled. This is because the assumption of equilibrium garnet growth is no longer valid outside the cores. Isopleth intersection thermobarometry breaks down following garnet core growth because the bulk rock composition is changed as garnet sequesters material, particularly Mn, forever removing it from the system unless the temperature becomes sufficiently high that diffusion and/or resorption reintroduces it to the system (Spear, 1993; Vance & Mahar, 1998). Figure 13 compares modelled and observed garnet zonation patterns and illustrates the effect of fractional crystallization for the preferred prograde path of sample 06SE23 (see Appendix S1 for a description of the calculation routine). This effect is to deplete the bulk rock composition, leading to a decrease in nutrient availability at the garnet surface and a corresponding decrease in growth rate. While the observed garnet zonation is fit quite well by the equilibrium growth model, some proportion of fractional crystallization may explain sharp compositional gradients in the San Emigdio Schist garnet, particularly in Mn. While we do not consider the effect of volume diffusion in garnet, some amount of diffusional relaxation of these steep compositional variations has probably occurred. High-Ca annuli in garnet from metasandstone schist (Figs 5 & 13) cannot be explained by fractional crystallization alone and probably reflect chemical disequilibrium during prograde metamorphism (Chernoff & Carlson, 1999; Konrad-Schmolke et al., 2005; Chapman et al., 2006).

Zonation preserved in garnet from samples 06SE23 and 08SE479b indicates that growth did not occur under decreasing pressure and/or temperature conditions (i.e. following peak conditions). Contours of garnet volume per cent are generally nearly isothermal with slightly negative slopes, indicating that it is impossible to grow garnet during decompression in these bulk compositions. Furthermore, garnet rims are characterized by decreasing X_{clino} and X_{sps} and increasing X_{prp}, which is only possible under conditions of increasing temperature (Figs 11 & 12).

The prograde path described above involves dehydration reactions, fluid loss (Figs 11a & 12a), and sequestration of Al, Ca, Fe, Mg, Mn and Si associated with garnet fractionation. In addition, peak assemblages are well-preserved, indicating that the necessary H2O was not available to promote extensive retrogression. However, free water must have been locally present to stabilize the D2 assemblage. Therefore, to reconstruct the retrograde path of the schist, separate pseudosections were drawn for the bulk compositions of samples 06SE23 and 08SE479b with sufficient free water (i.e. water-saturated) to stabilize chlorite and clinozoisite along the retrograde path (Fig. 14). For simplicity, it is assumed that the bulk composition effectively equilibrating during retrogression is similar to the original bulk composition from which garnet was subtracted (garnet rims preserve peak P–T composition and show no retrogressive modification). We estimated the modal proportion of garnet,
Fig. 12. Pseudosection shown in Fig. 10b with contours of (a) volume per cent H$_2$O in solids, (b) volume fraction garnet and (c–f) garnet composition expressed as mol fractions overlain. Arrow represents inferred prograde P–T trajectory.
approximated the composition of garnet grains by subdividing them into constituent zones and adding together the contribution of each zone, and finally calculated and subtracted the contribution of garnet to the bulk compositions.

The retrograde paths outlined in Fig. 15 are based on the stabilization of D2 assemblages. As garnet growth ceased and metasandstone schist (06SE23) entered the retrograde portion of the P–T path, chlorite and clinozoisite were stabilized. According to the retrograde pseudosection for sample 06SE23, this sample must have followed a trajectory with similar P–T slope during decompression than during burial to pass through the stability fields of chlorite and clinozoisite. Although epidote entered the stable mineral assemblage in mafic schist (08SE479b) varieties following peak metamorphism, chlorite and actinolite stability fields were not traversed along the retrograde path. The pseudosection for sample 08SE479b indicates that this is possible if the retrograde P–T trajectory passed between the chlorite/actinolite-out and clinozoisite/epidote-out reaction boundaries.

Fig. 13. Comparison of modelled garnet zonation patterns (a–c) and observed garnet compositional profiles (d). Modelled profiles for the prograde P–T trajectory shown in Fig. 11 (sample 06SE23) for (a) homogeneous equilibrium crystallization, (b) 10% fractional crystallization and (c) 25% fractional crystallization.
Figure 15 shows, for both metasandstone and mafic schist, two end-member retrograde paths that satisfy the constraints outlined above: (i) one with a shallower P–T slope than the prograde path (i.e. a counter-clockwise P–T loop) and (ii) one with a steeper slope (i.e. a clockwise P–T loop). While the retrograde path cannot be further constrained, we consider it likely that the geometry of the P–T loop for the schist lies between the end-member possibilities with roughly overlapping prograde and retrograde P–T trajectories (i.e. ‘Franciscan-type’ or ‘out and back’ P–T path; Ernst, 1988).

The retrograde paths shown in Fig. 15 involve the formation of clinozoisite/epidote and/or chlorite, which require the presence of H₂O to take place. Along these retrograde paths, each sample encounters contours of increasing H₂O content, implying that the assemblage becomes fluid-absent unless fluid is available along grain boundaries or is externally derived (Fig. 14) (Guiraud et al., 2001). Therefore, overprinting of peak assemblages by D2 minerals is evidence for open system behaviour involving H₂O influx.
DIFFUSION MODELLING OF BROKEN GARNET

Sample 06SE23 contains two garnet grains that ruptured and subsequently overgrew their broken margins, creating sharp compositional discontinuities. When a mineral overgrows itself in this fashion, the resulting interface between juxtaposed compositions in the composite grain is a natural diffusion couple. The degree of relaxation of the originally steep compositional step is dependent chiefly on temperature and the time interval over which diffusion was possible.

We exploit the diffusional annealing of the hypothetically originally sharp compositional steps in broken garnet from sample 06SE23 to estimate the amount of time required for their relaxation. It is assumed that the amount of time required for overgrowth of broken garnet margins is infinitesimally small compared to the rates of diffusion (Ganguly et al., 1996; Dachs & Proyer, 2002). The diffusive timescales for two grains in sample 06SE23 are modelled. For grain 1, Ca, Fe and Mn profiles, and for grain 2, Fe, Mg and Mn profiles were modelled. We did not attempt to model Mg and Ca in grains 1 and 2, respectively, due to the erratic nature of the measured profiles.

The analytical program PROFILER (available in Glicksman, 2000) was used to calculate interdiffusion coefficients and time-scales of diffusion from measured compositional profiles. PROFILER solves Fick’s second law for multicomponent diffusion couples based on user specified end-member compositions, distance, temperature, pressure, diffusion time-scale and self-diffusion data. The solutions calculated from PROFILER are only valid if diffusion coefficients do not vary with time. As diffusion coefficients are not constant during non-isothermal processes, such as during progressive metamorphism, Chakraborty & Ganguly (1991, 1992) developed the concept of a ‘characteristic temperature’, T_{ch}, which yields identical diffusive relaxation profiles when compared with those of metamorphic T–t paths. The San Emigdio Schist certainly experienced non-isothermal metamorphism during underplating and exhumation, and as such, the relationship $T_{ch} \approx 0.97T_{peak}$ was used to calculate characteristic temperatures based on peak metamorphic temperature estimates from thermobarometry. A discussion of model parameters and the theory behind garnet diffusion modelling is given in Appendix S1.

Garnet end-member compositions achieve plateau values adjacent to the diffusion zone in both grains (Fig. 7). Interdiffusion coefficients were calculated for each profile using thermobarometric constraints on sample 06SE23 (Table 1) at 10 kbar and $T_{ch} \approx 0.97T_{peak} = 645^\circ$C. In each case, the relaxation time was adjusted until modelled results could be visually fit to analytical profiles. Diffusion time-scales of 0.3 and 0.2 Myr were calculated from grains 1 and 2, respectively (Fig. 7). These values represent the amount of time required to cool garnet from peak temperatures to \sim500–550 $^\circ$C, below which garnet compositions

Fig. 15. P–T evolution for samples (a) 06SE23 and (b) 08SE479B. Prograde paths shown as solid lines. (a) ‘Core’ conditions from intersection of garnet isopleths in Fig. 11, ‘rim’ conditions from Fig. 9, end-member retrograde paths (dashed lines) constrained by the stability of chlorite and clinozoisite (fields from Fig. 14a). (b) ‘Core’ conditions from intersection of garnet isopleths in Fig. 12, ‘rim’ conditions from Fig. 9, end-member retrograde paths (dashed lines) constrained by the stability of clinozoisite and the lack of retrograde chlorite (fields from Fig. 14b).
The schist was too weak to have experienced any significant shear heating. Kidder & Ducea (2006) argued, based primarily on evidence of partial melting and ductile deformation of quartz, that the schist is incapable of supporting shear stresses of 50–90 MPa required by the shear heating hypothesis.

3. The upper plate was hot, with peak temperatures of 680–790 °C in the TSE complex (Pickett & Saleeby, 1993; this study). Kidder & Ducea (2006) argued, based on a one-dimensional thermal model, that high temperatures exhibited in upper levels of the schist (~700 °C) can be reached in ~0.3 Myr when exposed to an upper plate at 800 °C.

Deformation proceeded following the cessation of garnet growth into the stability field of D2 minerals. Morphologically similar broken garnet from deeper structural levels did not overgrow the broken margins and therefore, may have broken following peak conditions (Fig. 4).

DISCUSSION

Inverted metamorphism

The presence of an inverted metamorphic field gradient in the San Emigdio Schist, i.e. an upsection increase in peak temperature, is a characteristic feature of this and the majority of other southern California schist exposures (e.g. Ehlig, 1981; Sharry, 1981; Graham & Powell, 1984; Jacobson, 1995; Kidder & Ducea, 2006). Our petrological and thermobarometric work indicate that the San Emigdio Schist exhibits a gradation from lower amphibolite facies (~700 °C) to epidot-amphibolite facies (~600 °C) with increasing structural depth. We resolve no clear relationship between calculated metamorphic pressures and structural depth. Inverted temperature gradients preserved in other exposures of the southern California schist have been explained by: (i) shear heating along the subduction interface (Graham & England, 1976; England & Molnar, 1993; Ducea et al., 2009), (ii) rapid en masse underthrusting of cold schist beneath a hot upper plate (i.e. the ‘hot iron effect’, Peacock, 1992), and (iii) tectonic underplating and progressive cooling beneath an initially hot upper plate following the onset of shallow subduction (Peacock, 1992; Kidder & Ducea, 2006). Each scenario requires rapid cooling to preserve the inverted gradient. Explanations 1 and 2 require that the metamorphic gradient preserved in the schist records a geothermal gradient that existed during subduction, while scenario 3 does not. Although our results do not cast new light on this long-standing debate, we believe that scenario 3 provides the most satisfactory explanation of inverted metamorphism in the schist for the following reasons:

1. To preserve the inverted gradient in scenario 1, the effect of shear heating must become less significant following schist accretion to the upper plate. This may be accomplished through cessation or slowing of subduction, for which there is no evidence, or by re-localization of the megathrust beneath the schist–upper plate contact.

2. The schist was too weak to have experienced any significant shear heating. Kidder & Ducea (2006) argued, based primarily on evidence of partial melting and ductile deformation of quartz, that the schist is incapable of supporting shear stresses of 50–90 MPa required by the shear heating hypothesis.

Metamorphic convergence between upper and lower plates

In the San Emigdio Mountains, the schist and upper plate share similar structural relations and mineral parageneses. For instance, temperature estimates from the top of the schist and the base of the upper plate are identical within error (665–710 °C) and foliations and lineations in the schist are parallel to those in the upper plate and intervening mylonites (Chapman et al., 2010). Similar criteria were used by Ehlig (1981) and later by Jacobson (1997) to identify the Vincent fault, an ~1-km-thick shear zone separating the Pelona Schist from superjacent upper plate rocks, as an intact remnant of the Cretaceous megathrust. However, Rand fault mylonites in the San Emigdio Mountains are clearly associated with retrograde metamorphism and indicate top to the east (i.e. trench-directed) shear (Chapman et al., 2010). Therefore, we view metamorphic convergence between upper and lower plates in the San Emigdio Mountains as a structural coincidence. During shallow subduction, the schist must have been carried ~150 km inboard to reach a depth of 30 km (9 kbar) (Kidder & Ducea, 2006). We suggest that the schist came in contact with a hot (~800 °C) upper plate at these conditions, whereas the upper plate rocks that the schist would later come in contact with had already decompressed from 9 to 4 kbar conditions (Saleeby et al., 2007). In other words, we view the schist–upper plate contact preserved in the San Emigdio Mountains as being proximal to the original subduction megathrust, but subsequent schist ascent would have placed the hot schist against an upper plate that had already experienced significant cooling during uplift from deep levels (Fig. 16).
X_{grs}, X_{alm}, and X_{mps} and decreasing X_{perp} and Mg# at the rim (zone 2) are typical of garnet throughout the TSE complex (Pickett & Saleeby, 1993). In the San Emigdio gneiss, however, an additional zone (zone 3) overgrows zone 2 with compositions similar to those found in zone 1. In aggregate, we interpret the San Emigdio gneiss garnet patterns to indicate deep-crustal residence at elevated temperatures (zone 1), followed by cooling (zone 2), and reheating (zone 3) of the base of the upper plate adjacent to the ascending schist along the Rand fault.

P–T path

The schist of the San Emigdio Mountains has likely undergone a ‘Franciscan-type’ P–T path. Thermal models of subduction initiation (Cloos, 1982, 1985; Peacock, 1987; Kincaid & Sacks, 1997; Gerya et al., 2002) demonstrate high geothermal gradients (between a hot upper plate and cool lower plate) that relax with continued subduction as the upper plate cools. A possible explanation for our calculated P–T trajectories is in a newly initiated subduction zone with a decreasing geothermal gradient. Subduction of a conjugate massif to the Shatsky Rise is hypothesized to have driven slab flattening, thereby removing the mantle wedge and lowermost crust and repositioning the subduction zone along mid-to lower crustal levels of the recently active Late Cretaceous arc (Saleeby, 2003; Ducea et al., 2009). Later schist underplating led to refrigeration of the upper plate and relaxation of the initially high geothermal gradient. Similar scenarios are envisioned to explain P–T trajectories calculated from high-grade blocks in the Franciscan Complex (e.g. Wakabayashi, 1990; Krogh et al., 1994), eclogites in the Yukon–Tanana terrane (Perchuk et al., 1999), and in the subduction-related migmatic Sierra del Convento mélangé (Garcia-Casco et al., 2008). Following peak conditions, the subducted schist ascended by trench-directed channelized extrusion (Chapman et al., 2010). This stage is recorded by the stabilization of D2 minerals in metasandstone and mafic schist samples as the schist cooled rapidly (between 825 and 380 °C Myr$^{-1}$) from peak conditions. As prograde and retrograde portions of the P–T path shown in Fig. 15 follow similar trajectories, retrograde alteration of peak assemblages is limited. As a result, D1 assemblages are remarkably well preserved, as is commonly the case for the Franciscan Complex (Spear, 1993). Rapid cooling during decompression may also explain well-preserved garnet zonation features and the lack of ‘Mn kick-ups’ except at high structural levels.

Prograde elevated stresses and strain rates and rapid cooling following peak conditions

Garnet is a high-strength mineral, with high yield stress (~7 GPa; Pardavi-Horváth, 1984), Peierls stress (resistance to dislocation glide) (Karato et al., 1995) and toughness (resistance to fracture) (Whitney et al., 2007). Therefore, brittle deformation of natural garnet during metamorphism, while incompletely understood (Whitney, 1996), is probably restricted to very high stresses and strain rates. Broken garnet from the San Emigdio Schist exhibits similar microstructures to brittlely deformed garnet from the Sesia Zone of the Western Alps, which are attributed to major

Fig. 16. Generalized cross-section model for the southern SNB. Black and white stars show depositional site of the San Emigdio Schist and native site of the TSE complex, respectively. No vertical exaggeration. (a) Approximately 100 Ma onset of shallow subduction. (b) Approximately 95 Ma upward migration of slab interface to within batholithic crust (base of crust and mantle lithosphere sheared off) and shutoff of arc magmatism. Uplift, contractile deformation, and erosional denudation of the upper plate is followed by deposition and subduction of San Emigdio Schist protolith. (c) Approximately 90 Ma schist underplated beneath recently active arc rocks (~800 °C). Upper plate rocks exposed in San Emigdio and Tehachapi Mountains decompressed from 9 kbar (panel a) to 4 kbar conditions. (d) Approximately 85 Ma. Gravitational collapse of the upper plate drives trench-directed channelized extrusion of the schist (Chapman et al., 2010). Schist flow is dominated by simple shear near the boundaries of the channel and by pure shear at the centre of the wedge. Hot schist juxtaposed with TSE complex, reheating upper plate rocks.
paleoseismic events (Trepmann & Stöckhert, 2002). Microstructural characteristics of broken garnet (outlined above) and the highly strained texture of host metasediments are most consistent with deformation-induced garnet fracture, and cannot be explained by alternative mechanisms (e.g. Prior, 1993; Whitney, 1996; Ji et al., 1997). High-stress cataclastic deformation of garnet is in conflict with earlier arguments that the schist is not capable of supporting shear stresses in excess of 90 MPa. While the mechanics of brittle failure of rigid inclusions in a ductile matrix are poorly understood, with explanations favouring sequential fracture by high shear stresses at the garnet–matrix interface, the ‘modified shear-lag theory’ of Ji et al. (1997), the phenomenon has long been recognized (e.g. Ramberg, 1955; Boullier, 1980; Mandal et al., 2001; Trepmann & Stöckhert, 2002). We suggest a similar mechanism of stress transfer from the weak quartzofeldspathic matrix to the stiff garnet inclusions of the schist.

Fracturing of and deformation twinning in clinopyroxene along the Salinas shear zone are cited as evidence for large (400–1000 MPa), quasi-instantaneous, localized stresses accompanying seismic events (Ducea et al., 2007). Deformation twinning in clinopyroxene proceeded in concert with the prograde metamorphic replacement of amphibole by clinopyroxene (Kidder & Ducea, 2006), indicating that seismic events occurred during burial of the schist of Sierra de Salinas to ~10 kbar. Moreover, in the San Emigdio Schist, broken garnet overgrowths are compositionally identical to unbroken garnet rims (cf. Figs 5 & 7), which must have grown during the waning stages of prograde metamorphism at 10 kbar. Therefore, in both Sierra de Salinas and San Emigdio Schist localities, there exists microstructural evidence for large paleoseismic events, possibly along the subduction megathrust, at ~30 km depth.

If large paleoseismic events are responsible for cataclastic deformation of San Emigdio Schist garnet, these events must have occurred near peak conditions, i.e. during the reversal from subduction to eduction (Chapman et al., 2010). We speculate that stress builds associated with the reversal in transport polarity resulted in large paleoseismic events. Numerical simulations indicate that the closure of subduction channels at depth may be characterized by large gradients in stress state (Gerya et al., 2002).

Modelling of diffusive relaxation of juxtaposed garnet compositions suggests that garnet from the schist cooled from peak conditions at several 100 s °C Myr⁻¹. These cooling rates are consistent with geochronological and thermochronometric studies of the schist (Grove et al., 2003, 2008; Saleeby et al., 2007; Jacobson et al., 2011). In the San Emigdio Schist, the time interval between the youngest detrital zircon U–Pb ages (i.e. the maximum possible depositional age) and muscovite ⁴⁰Ar/³⁹Ar cooling ages is <3 Myr (Grove et al., 2003). Therefore, the schist was subducted to a depth of ~30 km at 700 °C and cooled through the 400 °C closure isotherm for ⁴⁰Ar/³⁹Ar muscovite (McDougall & Harrison, 1999) in <3 Myr, corresponding to cooling rates of > 100 °C Myr⁻¹. Similar cooling rates (100 s °C Myr⁻¹) are fit through high-temperature range garnet and medial range hornblende thermochronometric data from upper plate rocks in the Tehachapi Mountains (Saleeby et al., 2007) and are linked to gravitational collapse of the upper plate above the underplated schist (Chapman et al., 2010).

Evolution of the thermal structure of a newly initiated flat subduction zone

Field relationships, mineral assemblages, thermobarometry and thermodynamic modelling suggest partial melting of metasedimentary San Emigdio Schist under water-saturated conditions. Quartzofeldspathic leucosomes and veins developed during ductile deformation associated with the D1 episode, and are locally overprinted by the D2 fabric. These features indicate that anatectic coincided with ductile deformation near peak conditions, implying that partial melting of metasediment occurred as the schist reached a maximum depth of subduction (30 km) ~150 km inboard of the trench. We provide here a comparison with subduction complexes in adjacent areas that exhibit evidence for partial melting: the schist of Sierra de Salinas and the Catalina Schist of the California borderland.

Although partial melting probably did not occur in lower-grade Pelona, Orocopia and/or Rand schists, thermobarometric determinations (~700 °C, 10 kbar) and quartzofeldspathic veins and dykes from the schist of Sierra de Salinas suggest that anatectic proceeded under similar pressure, temperature and fluid activity conditions as in the San Emigdio Schist (Kidder & Ducea, 2006; Ducea et al., 2009). The timing of schist deposition and metamorphism decreases systematically from north-western (San Emigdio Schist, schists of Sierra de Salinas and Portal Ridge, and Rand Schist) to central and south-eastern exposures (Pelona and Orocopia schists) (Fig. 17) (Grove et al., 2003; Jacobson et al., 2011). Another distinctive trend not yet recognized is that high reported peak temperatures (590–714 °C) and partial melting are restricted to exposures of the schist with maximum depositional ages between 90 and 80 Ma (Sharry, 1981; Pickett & Saleeby, 1993; Kidder & Ducea, 2006; this study), whereas moderate temperatures (480–575 °C) typify 80–55 Ma schists (Fig. 17) (Graham & England, 1976; Graham & Powell, 1984; Jacobson, 1995, 1997; Jacobson et al., 2007). Tectonic underplating and progressive cooling beneath an initially hot upper plate following the onset of shallow subduction may explain this trend. This model also explains partial melting and/or high temperatures in San Emigdio, Tehachapi and Sierra de Salinas schists, lower temperatures in Pelona, Orocopia and Rand schists, inverted metamorphism in the schist as a whole, and the
observed \(P-T \) paths calculated from the San Emigdio body. It could be argued that 80 to 55 Ma schists sit beneath the arc in an inboard position where the upper plate contains younger plutonic rocks than does the upper plate of 90 to 80 Ma schists, and was therefore hotter later. However, Cretaceous to Tertiary plutons are volumetrically minor compared to pre-Cretaceous bodies in the upper plate of 80 to 55 Ma schists (e.g. Jacobson, 1997; Haxel et al., 2002; Jacobson et al., 2007) and we posit that the arc geotherm in the southern Sierra Nevada was higher than that of the Mojave region.

Based on overlapping age and provenance between the San Emigdio Schist and the youngest (c. 97–95 Ma), structurally deepest and lowest grade (blueschist and lower-grade facies) portions of the Catalina Schist, a tentative correlation has been assigned (Grove et al., 2008; Jacobson et al., 2007) and we posit that the arc geotherm in the southern Sierra Nevada was higher than that of the Mojave region.

Fig. 17. Palinspastic map showing pre-Neogene positions of San Emigdio and related schist after Grove et al. (2003) with 50 km of sinistral slip along the Garlock fault restored (Ross, 1989). Detrital zircon (dz) ages after Grove et al. (2003, 2008). Temperatures shown are the highest reported values from individual schist exposures. Temperatures from Sharry (1981) and Pickett & Saleeby (1993) (Tehachapi Mountains); Kidder & Ducea (2006) (Sierra de Salinas); Grove et al. (2008) (Santa Catalina Island); Graham & Powell (1984) (Rand Mountains and Sierra Pelona); Oyarzabal (1996) and Jacobson et al. (2007) (Orocopia and Gavilan Hills); and this study (San Emigdio Mountains). pm, partial melting; SGF, San Gabriel fault. Other abbreviations as in Fig. 1.
narios 4–6 is that each places a hot upper plate above a relatively cold lower plate, temporarily raising the geothermal gradient along the interface before steady-state subduction is achieved.

SUMMARY AND CONCLUSIONS

1. Field and petrological relationships for the San Emigdio Schist reveal two episodes of fabric development corresponding to peak (D1) and post-peak (D2) conditions. D1 mineral assemblages and degree of partial melting vary with proximity to the Rand fault, indicating the presence of an inverted metamorphic field gradient. Localized cataclastic deformation of schist garnet and subsequent formation of natural garnet diffusion couples occurred during the D1 episode.

2. Thermobarometric work corroborates petrological evidence for inverted metamorphism in the schist, with peak temperatures increasing from 590 to 700 °C from low to high structural levels, corresponding to thermal gradients of 50–240 °C km⁻¹. Peak pressures range from 8.5 to 11.1 kbar and do not vary with structural depth. Temperatures calculated from the San Emigdio gneiss (675–710 °C) are identical within error to those from the uppermost levels of the schist, whereas calculated pressures are ~1 kbar lower (7.1–8.4 kbar).

3. Thermodynamic modelling constrains the P–T history of the schist, which probably involved regression along a similar trajectory as the prograde path, resulting in a ‘Franciscan-type’ P–T path.

4. Diffusion modelling of natural garnet couples indicates rapid (825–380 °C Myr⁻¹) cooling from peak conditions to ~500 °C.

These data constrain the P–T history and the tectonics of underplating and exhumation of the San Emigdio Schist. This involved: (i) subduction and progressive underplating of the primarily turbiditic and basaltic schist protolith and the development of an inverted metamorphic gradient; (ii) low volume partial melting in the schist at peak conditions; (iii) localized fracture of garnet at high stresses and strain rates immediately prior to peak conditions, possibly related to large subduction zone seismic events; and (iv) reheating of upper plate batholithic assemblages during rapid structural ascent of the schist. While these results are consistent with an inferred tectonic evolution from shallow subduction beneath the recently active Late Cretaceous arc to exhumation by rapid trench-directed channelized extrusion in the subducted schist (Chapman et al., 2010), we cannot preclude alternative models solely based on this study.

We document the physical conditions fossilized in a deeply exhumed subduction channel in an ancient flat slab system. This research should facilitate future recognition of analogous ancient systems in other orogenic belts. Continued understanding of the dynamics of flat subduction requires a highly interactive approach between observational geophysics, dynamic modelling and geological observation of both active and ancient systems.

ACKNOWLEDGEMENTS

This research was supported by National Science Foundation grant EAR-0739071 and by the Gordon and Betty Moore Foundation. This is Caltech Tectonics Observatory Contribution 146. The manuscript benefited from discussions with N. Borneman, E. Duchs, J. Eiler, Y. Guan, C. Jacobson, S. Kidder and D. Vielzeuf. A. Barth, J. Platt and D. Whitney are thanked for thoughtful reviews of the manuscript.

REFERENCES

© 2011 Blackwell Publishing Ltd

Englewood Cliffs, NJ.

Engl...
METAMORPHISM OF THE SAN EMIGDIO SCHIST, CALIFORNIA

© 2011 Blackwell Publishing Ltd
Wakabayashi, J. & Dumitru, T.A., 2007. 40Ar/39Ar Ages from coherent, high-pressure metamorphic rocks of the Franciscan Complex, California: revisiting the timing of metamorphism of the world's type subduction complex. *International Geology Review*, 49, 873–906.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Descriptions of modelling techniques.

Appendix S2. Listing of numbered fields in Figs 10 and 14.

Table S1. Representative garnet analyses used in thermobarometric calculations (normalized to 12 O). Ferric iron calculated using the program AX (Holland & Powell, 1998). Abbreviations as in Table S1.

Table S2. Representative biotite analyses used in thermobarometric calculations (normalized to seven cations). Ferric iron calculated using the program AX (Holland & Powell, 1998). Abbreviations as in Table S1.

Table S3. Representative muscovite analyses used in thermobarometric calculations (normalized to seven cations). Ferric iron calculated using the program AX (Holland & Powell, 1998). Abbreviations as in Table S1.

Table S4. Representative plagioclase analyses used in thermobarometric calculations (normalized to 8 O). Ferric iron calculated using the program AX (Holland & Powell, 1998). Abbreviations as in Table S1.

Table S5. Representative amphibole analyses used in thermobarometric calculations (normalized to 23 O). Ferric iron calculated using the program AX (Holland & Powell, 1998). Abbreviations as in Table S1.

Table S6. Bulk compositions of San Emigdio Schist from XRF analyses. ‘Prograde’ compositions are H$_2$O-saturated. ‘Retrograde’ compositions are H$_2$O-saturated and modified by subtracting garnet from ‘prograde’ compositions. Abbreviations as in Table S1.

Please note: Wiley–Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Received 9 August 2010; revision accepted 24 January 2011.